Parameter Fitter
Find the best hyper-parameters for a model.
Inputs
- Data: input data
- Learner: learning algorithm
Parameter fitter shows performance of a learning algorithms with different settings of a hyper-parameter. The widget is currently limited to a single integer parameter. Not all learning algorithms support hyper-parameter tuning.
- Choose the parameter to fit.
- Define the lower and the upper limit; step size is determined automatically.
- Alternatively, specifies the values for the parameter. The widget also accepts
...
, e.g.1, 2, 3, ..., 10
or40, 60, ..., 100
. When the parameter has a minimal value (e.g. the number of components cannot be negative), one can also omit the lower bound, e.g...., 80, 100
; and if the parameter has a maximal value, one can omit the upper bound, e.g.2, 4, 6, ...,
. - A plot showing the performance at different values of the parameter. The graph shows AUC for classification problems and R2 for regression.